Skip to content

coders33123/Cere

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

import math import random import re from collections import deque import numpy as np

Assuming AdvancedEvolvingOSSimulation and EvolvingOSSimulation are defined earlier in the context

For a standalone execution, you'd need to provide their definitions.

As a placeholder for this continuation, let's assume a basic structure

if not already defined:

try: _ = AdvancedEvolvingOSSimulation except NameError: class EvolvingOSSimulation: def init(self, initial_state=None, learning_rate=0.01): self.system_state = initial_state if initial_state is not None else {} self.learning_rate = learning_rate self.action_history = deque(maxlen=100) # To store history for context

class AdvancedEvolvingOSSimulation(EvolvingOSSimulation):
    def __init__(self, initial_state=None, learning_rate=0.1, decay_rate=0.95, context_window=3):
        super().__init__(initial_state=initial_state, learning_rate=learning_rate)
        self.system_state = initial_state if initial_state is not None else {
            'resource_share_multimedia': 0.6,
            'priority_level_multimedia': 7,
            'latency_tolerance_multimedia': 0.1,
            'resource_share_background': 0.2,
            'priority_level_background': 3,
            'latency_tolerance_background': 10.0,
            'responsiveness_weight': 0.8,
            'throughput_weight': 0.2,
        }
        self.decay_rate = decay_rate
        self.context_window = context_window
        self.action_value_estimates = {}
        print("Placeholder Advanced simulation initialized.")

class HyperAdvancedEvolvingOSSimulation(AdvancedEvolvingOSSimulation): """ A further evolution, incorporating: - More complex, potentially non-linear state representation (e.g., features). - More sophisticated intent parsing (NLP/NLU integration). - Policy Gradient or Actor-Critic reinforcement learning. - A simulated environment with multiple, interacting processes and resources. - External factors simulation (network congestion, CPU temperature). - Uncertainty modeling (Bayesian methods). - Explainable AI elements (trace of decision process). """

def __init__(self, initial_state=None, learning_rate=0.001, decay_rate=0.98, context_window=5, feature_dim=10):
    super().__init__(initial_state=initial_state, learning_rate=learning_rate, decay_rate=decay_rate, context_window=context_window)

    self.feature_dim = feature_dim
    # Initialize internal system state (parameters the OS can control/learn)
    self.system_state = initial_state if initial_state is not None else {
        'resource_share_multimedia': 0.6, # % of CPU/GPU/Memory allocated
        'priority_level_multimedia': 7,   # Priority queue level (1-10)
        'latency_tolerance_multimedia': 0.1, # Acceptable latency (seconds)
        'resource_share_background': 0.2,
        'priority_level_background': 3,
        'latency_tolerance_background': 10.0,
        'resource_share_networking': 0.1,
        'priority_level_networking': 5,
        'responsiveness_weight': 0.8,      # Internal weight for responsiveness in optimization
        'throughput_weight': 0.2,          # Internal weight for throughput
        'energy_efficiency_weight': 0.1,   # New: weight for energy
        'disk_io_priority_factor': 0.5,    # New: influence on disk I/O
        'network_bandwidth_target': 1000,  # New: MB/s target
    }
    self.system_features = self._state_to_features(self.system_state)

    # Policy model (Actor): maps state features to probabilities of taking actions.
    # Storing weights for each possible action, each weight vector corresponds to feature_dim
    self.all_possible_actions = self._generate_all_possible_actions()
    self.policy_weights = {str(action): np.random.uniform(-0.1, 0.1, self.feature_dim)
                           for action in self.all_possible_actions}

    # Value model (Critic): maps state features to estimated value of the state.
    self.value_weights = np.random.uniform(-0.1, 0.1, self.feature_dim)

    # Simulated Environment: tracks dynamic resource usage, performance metrics
    self.environment = {
        'cpu_load': 0.5,           # Current overall CPU load (0-1)
        'memory_pressure': 0.3,    # Current memory pressure (0-1)
        'network_congestion': 0.2, # External network congestion (0-1)
        'disk_io_queue': 0.1,      # Disk I/O queue length (0-1)
        'temperature': 50,         # Simulated system temperature (C)

        # Observed performance metrics (influenced by system_state and environment factors)
        'observed_multimedia_latency': 0.15, # Actual latency for multimedia tasks
        'observed_background_throughput': 800, # Actual throughput for background tasks (MB/s)
        'observed_energy_consumption': 70,   # Actual energy consumption (Watts)
    }
    print("Hyper Advanced simulation initialized.")
    print("Initial system features (example):", self.system_features[:3])
    # print("Initial policy weights (sample):", {k: v[:3] for k, v in list(self.policy_weights.items())[:3]})
    # print("Initial value weights:", self.value_weights[:3])

def _state_to_features(self, state):
    """
    Converts the internal system state dictionary and current environment
    into a numerical feature vector. This is the OS's 'perception'.
    """
    # Complex mapping: normalized values, interaction terms, environment context
    features = [
        state.get('resource_share_multimedia', 0),
        state.get('priority_level_multimedia', 0) / 10.0,
        state.get('latency_tolerance_multimedia', 0),
        state.get('resource_share_background', 0),
        state.get('priority_level_background', 0) / 10.0,
        state.get('responsiveness_weight', 0),
        state.get('throughput_weight', 0),
        state.get('energy_efficiency_weight', 0),
        state.get('disk_io_priority_factor', 0),
        state.get('network_bandwidth_target', 0) / 2000.0, # Normalize large value

        # Incorporate environment features directly into the state for decision making
        self.environment.get('cpu_load', 0),
        self.environment.get('memory_pressure', 0),
        self.environment.get('network_congestion', 0),
        self.environment.get('disk_io_queue', 0),
        self.environment.get('temperature', 0) / 100.0, # Normalize temp
        self.environment.get('observed_multimedia_latency', 0),
        self.environment.get('observed_background_throughput', 0) / 1000.0,
        self.environment.get('observed_energy_consumption', 0) / 100.0,

        # Add interaction terms or non-linearities
        (state.get('resource_share_multimedia', 0) * self.environment.get('cpu_load', 0)),
        (state.get('priority_level_background', 0) / 10.0 * self.environment.get('disk_io_queue', 0))
    ]

    # Pad or truncate features to match feature_dim
    features = (features + [0.0] * self.feature_dim)[:self.feature_dim]
    return np.array(features)

def _generate_all_possible_actions(self):
    """ Generates a representative set of possible atomic actions.
        Actions now modify the system_state directly.
    """
    actions = []
    # Define base increments/decrements for parameters
    param_changes = {
        'resource_share': 0.05,
        'priority_level': 1,
        'latency_tolerance': 0.01,
        'weight': 0.05,
        'disk_io_priority_factor': 0.1,
        'network_bandwidth_target': 50
    }

    # Iterate over all system_state parameters to generate adjust actions
    for param in self.system_state.keys():
        base_name = ''
        if 'resource_share' in param: base_name = 'resource_share'
        elif 'priority_level' in param: base_name = 'priority_level'
        elif 'latency_tolerance' in param: base_name = 'latency_tolerance'
        elif 'weight' in param: base_name = 'weight'
        elif 'disk_io_priority_factor' in param: base_name = 'disk_io_priority_factor'
        elif 'network_bandwidth_target' in param: base_name = 'network_bandwidth_target'

        if base_name:
            amount = param_changes.get(base_name, 0)
            if amount > 0:
                actions.append({'type': 'adjust_param', 'param': param, 'direction': 'increase', 'amount': amount})
                actions.append({'type': 'adjust_param', 'param': param, 'direction': 'decrease', 'amount': amount})

    # Add a "no-op" action
    actions.append({'type': 'no_op'})
    return actions

def _parse_intent(self, intent_string):
    """
    Sophisticated intent parsing using NLP/NLU concepts.
    Extracts goals, metrics, task types, constraints, and sentiment.
    """
    intent_string = intent_string.lower()
    parsed_intent = {
        'goals': [],
        'target_metrics': [],
        'task_types': [],
        'constraints': {},
        'sentiment': 0 # -1 (negative), 0 (neutral), 1 (positive)
    }

    # Goals (more nuanced keywords)
    if re.search(r'\b(optimize|improve|boost|accelerate|speed up)\b', intent_string):
        parsed_intent['goals'].append('optimize')
    if re.search(r'\b(prioritize|focus on|dedicate resources)\b', intent_string):
        parsed_intent['goals'].append('prioritize')
    if re.search(r'\b(reduce|decrease|conserve|minimize)\b', intent_string):
        parsed_intent['goals'].append('reduce')
    if re.search(r'\b(maintain|keep stable|ensure consistency)\b', intent_string):
        parsed_intent['goals'].append('maintain')

    # Target metrics
    if re.search(r'\b(responsiveness|latency|lag|delay)\b', intent_string):
        parsed_intent['target_metrics'].append('responsiveness')
    if re.search(r'\b(throughput|speed|bandwidth|data transfer)\b', intent_string):
        parsed_intent['target_metrics'].append('throughput')
    if re.search(r'\b(energy|power|battery life)\b', intent_string):
        parsed_intent['target_metrics'].append('energy_efficiency')
    if re.search(r'\b(cpu usage|processor load)\b', intent_string):
        parsed_intent['target_metrics'].append('cpu_load')
    if re.search(r'\b(memory usage|ram)\b', intent_string):
        parsed_intent['target_metrics'].append('memory_pressure')


    # Task types
    if re.search(r'\b(multimedia|video|audio|streaming|gaming)\b', intent_string):
        parsed_intent['task_types'].append('multimedia')
    if re.search(r'\b(background|computation|batch processing|rendering|ai task)\b', intent_string):
        parsed_intent['task_types'].append('background')
    if re.search(r'\b(network|download|upload|web Browse)\b', intent_string):
        parsed_intent['task_types'].append('networking')
    if re.search(r'\b(disk|file operations|io)\b', intent_string):
        parsed_intent['task_types'].append('disk_io')


    # Constraints: numerical targets, probabilities, timeframes
    # Example: "latency to 0.05s", "throughput by 90%", "80% probability"
    num_val_match = re.search(r'(\d+\.?\d*)\s*(?:%|ms|s|mb/s|gb/s|watts?)?', intent_string)
    if num_val_match:
        value = float(num_val_match.group(1))
        unit = num_val_match.group(2) if num_val_match.group(2) else ''

        if '%' in unit:
            parsed_intent['constraints']['percentage_target'] = value / 100.0
        elif 'ms' in unit:
            parsed_intent['constraints']['time_target_seconds'] = value / 1000.0
        elif 's' in unit:
            parsed_intent['constraints']['time_target_seconds'] = value
        elif 'mb/s' in unit or 'gb/s' in unit:
            parsed_intent['constraints']['throughput_target'] = value * (1000 if 'gb/s' in unit else 1)
        elif 'watts' in unit:
            parsed_intent['constraints']['energy_target_watts'] = value

    prob_match = re.search(r'(\d+)% probability', intent_string)
    if prob_match:
        parsed_intent['constraints']['prob_target'] = int(prob_match.group(1)) / 100.0

    time_match = re.search(r'within (\d+)\s?(minutes|seconds)', intent_string)
    if time_match:
        time_value = int(time_match.group(1))
        time_unit = time_match.group(2)
        parsed_intent['constraints']['time_target_seconds'] = time_value * (60 if 'minute' in time_unit else 1)

    # Basic Sentiment Analysis (keywords only)
    if re.search(r'\b(urgent|critical|immediately|now)\b', intent_string):
        parsed_intent['sentiment'] = 1 # More positive/urgent
    if re.search(r'\b(slow|bad|laggy|poor)\b', intent_string):
        parsed_intent['sentiment'] = -1 # Negative

    print("Parsed Hyper-Advanced intent:", parsed_intent)
    return parsed_intent

def _policy_network_output_raw_scores(self, features):
    """
    The 'Actor' part: Calculates raw scores (logits) for each possible action
    given the current state features, using the policy weights.
    """
    raw_scores = {}
    for action_str, weights in self.policy_weights.items():
        # Dot product of features and action-specific weights
        raw_scores[action_str] = np.dot(features, weights)
    return raw_scores

def _select_action_probabilistically(self, current_features, parsed_intent):
    """
    Selects an action based on the policy network's output probabilities.
    Uses softmax to convert raw scores to probabilities, then samples.
    """
    raw_scores = self._policy_network_output_raw_scores(current_features)
    
    # Adjust raw scores based on intent sentiment - a simple form of bias
    if parsed_intent['sentiment'] > 0: # If urgent/positive sentiment
        for action_str, score in raw_scores.items():
            if 'increase' in action_str or 'prioritize' in action_str: # Favor actions that increase/prioritize
                raw_scores[action_str] += 0.5 # Boost scores
    elif parsed_intent['sentiment'] < 0: # If negative sentiment
         for action_str, score in raw_scores.items():
            if 'decrease' in action_str or 'reduce' in action_str: # Favor actions that decrease/reduce
                raw_scores[action_str] += 0.5 # Boost scores


    # Convert raw scores to probabilities using softmax
    # Add a small epsilon to avoid math.exp(large_number) overflow if not using np.exp robustly
    exp_scores = np.exp(list(raw_scores.values()) - np.max(list(raw_scores.values()))) # For numerical stability
    probabilities = exp_scores / np.sum(exp_scores)

    # Select an action based on these probabilities
    selected_action_str = np.random.choice(list(raw_scores.keys()), p=probabilities)
    selected_action = eval(selected_action_str) # Convert string representation back to dict

    print(f"Action probabilities: {[f'{p:.2f}' for p in probabilities]}")
    print(f"Selected action by policy: {selected_action}")
    return selected_action, probabilities[list(raw_scores.keys()).index(selected_action_str)]


def _get_state_value(self, features):
    """
    The 'Critic' part: Estimates the value of a given state (feature vector)
    using the value weights.
    """
    return np.dot(features, self.value_weights)

def _apply_action_to_state(self, current_state, action):
    """
    Applies the selected action to the current system_state parameters.
    Includes clipping to keep parameters within logical bounds.
    """
    new_state = current_state.copy()
    if action['type'] == 'adjust_param':
        param = action['param']
        amount = action['amount']
        direction = action['direction']

        if param in new_state:
            change = amount if direction == 'increase' else -amount
            new_state[param] += change

            # Apply clipping to keep parameters within valid ranges
            if 'resource_share' in param:
                new_state[param] = max(0.0, min(1.0, new_state[param]))
            elif 'priority_level' in param:
                new_state[param] = max(1, min(10, new_state[param]))
            elif 'latency_tolerance' in param:
                new_state[param] = max(0.01, new_state[param]) # Latency tolerance must be positive
            elif 'weight' in param:
                new_state[param] = max(0.0, min(1.0, new_state[param])) # Weights between 0 and 1
            elif 'disk_io_priority_factor' in param:
                new_state[param] = max(0.0, min(1.0, new_state[param]))
            elif 'network_bandwidth_target' in param:
                new_state[param] = max(100, new_state[param]) # Min bandwidth

    return new_state


def _update_environment(self, current_state_after_action):
    """
    Simulates the dynamic changes in the OS environment.
    This is where the complex, emergent behavior happens.
    The current_state_after_action (our learned policy parameters)
    directly influences the environment's observed metrics.
    External factors (noise, trends) also play a role.
    """
    # Simulate external factors fluctuating (noise, trends)
    self.environment['cpu_load'] = max(0.0, min(1.0, self.environment['cpu_load'] + random.uniform(-0.05, 0.05)))
    self.environment['memory_pressure'] = max(0.0, min(1.0, self.environment['memory_pressure'] + random.uniform(-0.03, 0.03)))
    self.environment['network_congestion'] = max(0.0, min(1.0, self.environment['network_congestion'] + random.uniform(-0.04, 0.04)))
    self.environment['disk_io_queue'] = max(0.0, min(1.0, self.environment['disk_io_queue'] + random.uniform(-0.02, 0.02)))
    self.environment['temperature'] = max(30, min(90, self.environment['temperature'] + random.uniform(-2, 2))) # Simulate temperature

    # Simulate observed performance metrics based on current system_state (policy)
    # and current environment factors. This is the 'true' system dynamics.
    # Multimedia Latency (lower is better):
    # Influenced negatively by multimedia resource share (less latency with more share),
    # positively by multimedia priority, and positively by network congestion/cpu load.
    self.environment['observed_multimedia_latency'] = max(0.01,
        (1.0 - current_state_after_action['resource_share_multimedia']) * 0.2 +
        (10 - current_state_after_action['priority_level_multimedia']) * 0.01 +
        self.environment['network_congestion'] * 0.15 +
        self.environment['cpu_load'] * 0.1 +
        random.gauss(0, 0.02) # Noise
    )

    # Background Throughput (higher is better):
    # Influenced positively by background resource share/priority,
    # negatively by disk I/O queue / memory pressure.
    self.environment['observed_background_throughput'] = max(10,
        current_state_after_action['resource_share_background'] * 1000 +
        current_state_after_action['priority_level_background'] * 50 -
        self.environment['disk_io_queue'] * 200 -
        self.environment['memory_pressure'] * 150 +
        random.gauss(0, 50) # Noise
    )

    # Energy Consumption (lower is better):
    # Influenced by total resource shares, temperature, and current performance weights.
    self.environment['observed_energy_consumption'] = max(10,
        (current_state_after_action['resource_share_multimedia'] +
         current_state_after_action['resource_share_background'] +
         current_state_after_action['resource_share_networking']) * 30 +
        self.environment['temperature'] * 0.5 +
        current_state_after_action['responsiveness_weight'] * 10 + # Higher weights for performance might mean more energy
        current_state_after_action['throughput_weight'] * 5 +
        random.gauss(0, 5) # Noise
    )
    print("Updated Environment State:", {k: f"{v:.2f}" for k, v in self.environment.items()})


def _calculate_reward(self, parsed_intent, current_environment, state_before_action, state_after_action):
    """
    Calculates a complex reward signal based on how well the system's
    performance (from the environment) meets the user's intent and internal goals.
    This is the OS's 'evaluation function'.
    """
    reward = 0.0

    # Base reward for meeting general system health goals (e.g., balanced load, low temperature)
    reward += (1.0 - self.environment['cpu_load']) * 0.1
    reward += (1.0 - self.environment['memory_pressure']) * 0.1
    reward += (1.0 - (self.environment['temperature'] - 30) / 60) * 0.1 # Normalize 30-90C to 0-1

    # Reward based on intent goals and target metrics
    if 'optimize' in parsed_intent['goals'] or 'prioritize' in parsed_intent['goals']:
        if 'responsiveness' in parsed_intent['target_metrics']:
            # Penalize high latency, reward low latency
            latency_factor = self.environment['observed_multimedia_latency'] / current_state_after_action['latency_tolerance_multimedia']
            reward -= max(0, latency_factor - 1.0) * 2.0 # Strong penalty if exceeds tolerance
            reward += (1.0 - latency_factor) * current_state_after_action['responsiveness_weight'] * 1.0 # Reward for being below tolerance

            # Check specific latency targets
            if 'time_target_seconds' in parsed_intent['constraints']:
                target_lat = parsed_intent['constraints']['time_target_seconds']
                if self.environment['observed_multimedia_latency'] <= target_lat:
                    reward += 1.0 # Significant bonus for meeting explicit target
                else:
                    reward -= (self.environment['observed_multimedia_latency'] - target_lat) * 2.0 # Penalty for missing target

        if 'throughput' in parsed_intent['target_metrics']:
            # Reward high throughput
            current_throughput = self.environment['observed_background_throughput']
            reward += (current_throughput / 1000.0) * current_state_after_action['throughput_weight'] * 1.0 # Normalized throughput

            # Check specific throughput targets
            if 'throughput_target' in parsed_intent['constraints']:
                target_thp = parsed_intent['constraints']['throughput_target']
                if current_throughput >= target_thp:
                    reward += 1.0
                else:
                    reward -= (target_thp - current_throughput) / 500.0

        if 'energy_efficiency' in parsed_intent['target_metrics']:
            # Reward low energy consumption
            reward -= (self.environment['observed_energy_consumption'] / 100.0) * current_state_after_action['energy_efficiency_weight'] * 0.5 # Penalty for higher energy

            if 'energy_target_watts' in parsed_intent['constraints']:
                target_energy = parsed_intent['constraints']['energy_target_watts']
                if self.environment['observed_energy_consumption'] <= target_energy:
                    reward += 0.5
                else:
                    reward -= (self.environment['observed_energy_consumption'] - target_energy) / 50.0

    # Penalty for violating probability targets (conceptually, over many episodes)
    # This is more for the overall learning trend than a single instance.
    # If the actual performance probability (observed success rate over time) is below the target,
    # it would feed into a meta-learning reward. For a single step, it's indirect.

    # Penalty for large, unnecessary state changes (discourage volatility if not explicitly requested)
    # Calculate diff between state_before_action and state_after_action
    change_penalty = 0
    for param, val_after in state_after_action.items():
        if param in state_before_action:
            change_penalty += abs(val_after - state_before_action[param])
    reward -= change_penalty * 0.1 # Small penalty for change magnitude

    # Boost reward if intent sentiment is positive and goals are met
    if parsed_intent['sentiment'] > 0 and reward > 0:
        reward *= 1.2
    # Penalize more if sentiment is negative and goals are missed
    elif parsed_intent['sentiment'] < 0 and reward <= 0:
        reward *= 1.5

    print(f"Calculated reward: {reward:.4f}")
    return reward

def _learn_from_outcome(self, action, reward, prob_selected_action, state_before_features, state_after_features):
    """
    Implements Actor-Critic learning:
    1. Critic (Value Network) Update: Learns to predict the value of a state.
    2. Actor (Policy Network) Update: Learns to take actions that lead to higher rewards.
    """
    # Critic Update (Value Network)
    current_state_value = self._get_state_value(state_before_features)
    next_state_value = self._get_state_value(state_after_features) # Value of the state AFTER action and environment update

    # Temporal Difference (TD) error: R + gamma * V(s') - V(s)
    td_target = reward + self.decay_rate * next_state_value
    td_error = td_target - current_state_value

    # Update Critic (Value Weights)
    # Apply gradient descent to minimize TD error
    self.value_weights += self.learning_rate * td_error * state_before_features

    # Actor Update (Policy Network)
    # Advantage is typically TD_error for simple Actor-Critic
    advantage = td_error

    # Policy Gradient Update for the selected action
    # The goal is to increase log(probability of action) for good actions (positive advantage)
    # and decrease for bad actions (negative advantage).
    selected_action_str = str(action)
    
    # Calculate gradient of log probability w.r.t. policy weights (simplified)
    # For a linear policy with softmax output, the gradient of log_prob(a|s) w.r.t. W_a is (features - sum(prob_j * features_j))
    # Here, a simpler form where the gradient is proportional to the state features
    # and scaled by (1 - prob) or (prob - 1) - this needs careful derivation for true softmax.
    # For simplicity, we approximate: if an action was good (positive advantage), reinforce its weights.
    # if an action was bad (negative advantage), weaken its weights.
    
    # This is a very simplified policy gradient update for a linear model
    self.policy_weights[selected_action_str] += self.learning_rate * advantage * state_before_features

    # Optional: Add entropy bonus to encourage exploration (discourage deterministic policies)
    # entropy_bonus = -np.sum(probabilities * np.log(probabilities + 1e-8)) # Add small epsilon for log(0)
    # for action_str in self.policy_weights:
    #     self.policy_weights[action_str] += self.learning_rate * 0.01 * entropy_bonus * state_before_features # Small constant for entropy

    print(f"Learning: TD Error: {td_error:.4f}. Updated Actor and Critic weights.")


def process_and_adapt(self, intent_string):
    """
    Processes a user intent using Hyper-Advanced methods.
    This is the main loop for an interaction.
    """
    print("\n--- Processing New Hyper-Advanced Intent ---")
    print("Intent:", intent_string)

    # 1. Capture current state features (before any action)
    state_before_features = self.system_features.copy()
    state_before_params = self.system_state.copy() # Capture current policy parameters

    # 2. Parse the user's intent
    parsed_intent = self._parse_intent(intent_string)

    if not parsed_intent or (not parsed_intent['goals'] and not parsed_intent['task_types']):
        print("Could not parse meaningful intent.")
        return

    # 3. Policy (Actor) selects an action based on current features and intent
    # (Candidate actions are predefined; the policy learns to choose among them)
    selected_action, prob_selected_action = self._select_action_probabilistically(state_before_features, parsed_intent)

    # 4. Apply the selected action to the OS's internal state (policy parameters)
    self.system_state = self._apply_action_to_state(state_before_params, selected_action)
    print("System state (policy parameters) after action:", {k:f"{v:.3f}" for k,v in self.system_state.items()})

    # 5. Update the simulated environment based on the new system state
    # This simulates how the OS's internal changes affect real-world performance metrics
    self._update_environment(self.system_state)

    # 6. Re-capture features of the new state for the Critic
    state_after_features = self._state_to_features(self.system_state)

    # 7. Calculate the reward based on the outcome in the environment
    reward = self._calculate_reward(parsed_intent, self.environment, state_before_params, self.system_state)

    # 8. Learn from the outcome (Actor-Critic update)
    self._learn_from_outcome(selected_action, reward, prob_selected_action, state_before_features, state_after_features)

    # 9. Store history for context and analysis
    self.action_history.append({
        'intent': intent_string,
        'parsed_intent': parsed_intent,
        'selected_action': selected_action,
        'prob_selected_action': prob_selected_action,
        'reward': reward,
        'state_before_params': state_before_params,
        'state_after_params': self.system_state.copy(),
        'environment_after': self.environment.copy()
    })

    print("--- Hyper-Advanced Intent Processed ---")

Demonstration of Hyper-Advanced Simulation

print("\n\n--- Starting Hyper Advanced Simulation ---")

# Initialize the hyper advanced simulated system
hyper_adv_sim_os = HyperAdvancedEvolvingOSSimulation(feature_dim=20, learning_rate=0.005) # Increased feature_dim for more complexity

# Process intents, observing state changes and learning
# Run multiple times to observe learning and adaptation
for i in range(1):
    print(f"\n===== Episode {i+1} =====")
    hyper_adv_sim_os.process_and_adapt("Optimize system responsiveness for multimedia, with an 80% chance within 0.08 seconds. It's urgent!")
    hyper_adv_sim_os.process_and_adapt("Prioritize background computation, ensure 900 MB/s throughput.")
    hyper_adv_sim_os.process_and_adapt("Reduce energy consumption to 60 watts. Conserve battery life.")
    hyper_adv_sim_os.process_and_adapt("I'm experiencing terrible lag with streaming video. Fix it now!")
    hyper_adv_sim_os.process_and_adapt("Boost network bandwidth for downloads, target 1200 MB/s.")
    hyper_adv_sim_os.process_and_adapt("Maintain stable CPU usage and minimize memory pressure.")
    hyper_adv_sim_os.process_and_adapt("Optimize responsiveness for multimedia tasks, with an 80% chance within 0.08 seconds. It's urgent!") # Repeat to see learning effect
    hyper_adv_sim_os.process_and_adapt("Prioritize background computation, ensure 900 MB/s throughput.") # Repeat

# Inspect final policy parameters and environment state after extensive learning
print("\n--- Final System State (Policy Parameters) after Hyper Advanced Simulation ---")
for k, v in hyper_adv_sim_os.system_state.items():
    print(f"  {k}: {v:.4f}")

print("\n--- Final Environment State ---")
for k, v in hyper_adv_sim_os.environment.items():
    print(f"  {k}: {v:.4f}")

print("\n--- Sample of Action History (last 5 entries) ---")
for entry in list(hyper_adv_sim_os.action_history)[-5:]:
    print(f"  Intent: {entry['intent']}")
    print(f"  Action: {entry['selected_action']}")
    print(f"  Reward: {entry['reward']:.4f}")
    print(f"  Observed Latency: {entry['environment_after']['observed_multimedia_latency']:.4f}")
    print(f"  Observed Throughput: {entry['environment_after']['observed_background_throughput']:.4f}")
    print(f"  Observed Energy: {entry['environment_after']['observed_energy_consumption']:.4f}")
    print("-" * 20)

# Further analysis could involve plotting trends of parameters, rewards,
# and environment metrics over many more interactions to truly see learning convergence.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages