Skip to content
View coders33123's full-sized avatar
:atom:
Free
:atom:
Free

Block or report coders33123

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
coders33123/README.md

Admin-Level Machine Learning and NLP Utility Module

--- Imports ---

import gspread import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.impute import SimpleImputer from sklearn.ensemble import RandomForestClassifier from skopt import BayesSearchCV from skopt.space import Real, Categorical, Integer from transformers import pipeline

--- Code Generation Function ---

def generate_code(description: str, language: str, model: str) -> str: """ Generates boilerplate code for a specified description and language. """ if model.lower() == "codegen": return "Under Construction: Codegen model support not implemented yet." function_name = description.replace(" ", "_") code = f"""def {function_name}(): """Auto-generated function in {language}.""" pass """ return code

--- Zero-Shot Classification ---

def zero_shot_classification(text: str, possible_labels: list, model_name: str = "facebook/bart-large-mnli") -> dict: """ Performs zero-shot classification using Hugging Face transformers. """ if not isinstance(possible_labels, list) or not possible_labels: raise ValueError("possible_labels must be a non-empty list of strings.") classifier = pipeline( "zero-shot-classification", model=model_name, device=0 # Use GPU if available ) results = classifier(text, possible_labels, multi_label=True) return results

--- Chain-of-Thought Placeholder ---

def chain_of_thought(prompt: str, hint: str, model: str): """ Placeholder for chain-of-thought reasoning functionality. """ print("Chain-of-thought reasoning is under construction.")

--- Spreadsheet Loading ---

def load_spreadsheet(gc_client, sheet_name: str): """ Loads all values from a Google Sheet into a pandas DataFrame. """ try: worksheet = gc_client.open(sheet_name).sheet1 rows = worksheet.get_all_values() # Assuming the first row is the header if not rows: print(f"Spreadsheet '{sheet_name}' is empty.") return pd.DataFrame() df = pd.DataFrame(rows[1:], columns=rows[0]) # Attempt to convert columns to numeric where possible for col in df.columns: df[col] = pd.to_numeric(df[col], errors='coerce') return df except Exception as e: print(f"Error loading spreadsheet '{sheet_name}': {e}") return pd.DataFrame()

--- Data Cleaning ---

def clean_data(df: pd.DataFrame) -> pd.DataFrame: """ Handles missing values using median imputation. """ if df.empty: print("DataFrame is empty, skipping cleaning.") return df imputer = SimpleImputer(strategy='median') # Only impute numerical columns numerical_cols = df.select_dtypes(include=np.number).columns if not numerical_cols.empty: df[numerical_cols] = imputer.fit_transform(df[numerical_cols]) return df

--- Feature Engineering Placeholder ---

def feature_engineering(df: pd.DataFrame) -> pd.DataFrame: """ Placeholder for feature engineering steps. """ print("Feature engineering is under construction.") return df

--- Model Training ---

def train_model(X_train: pd.DataFrame, y_train: pd.Series, model_type: str = 'logistic_regression'): """ Trains a specified machine learning model. """ if model_type.lower() == 'logistic_regression': model = LogisticRegression(max_iter=1000) elif model_type.lower() == 'random_forest': model = RandomForestClassifier(random_state=42) else: raise ValueError(f"Unsupported model type: {model_type}") model.fit(X_train, y_train) return model

--- Model Evaluation ---

def evaluate_model(model, X_test: pd.DataFrame, y_test: pd.Series) -> float: """ Evaluates the model's accuracy on the test set. """ predictions = model.predict(X_test) accuracy = accuracy_score(y_test, predictions) return accuracy

--- Model Optimization ---

def optimize_model(model_instance, X_train: pd.DataFrame, y_train: pd.Series, param_space: dict): """ Optimizes model hyperparameters using BayesSearchCV. """ if not param_space: print("No parameter space provided for optimization.") return None, None bayes_search = BayesSearchCV( model_instance, param_space, n_iter=50, # Number of optimization iterations random_state=42, cv=3, # Cross-validation folds n_jobs=-1 # Use all available cores ) bayes_search.fit(X_train, y_train) print("Best parameters found: ", bayes_search.best_params_) print("Best accuracy found: ", bayes_search.best_score_) return bayes_search.best_estimator_, bayes_search.best_params_

--- Visualization ---

def plot_distribution(df: pd.DataFrame, column: str): """ Plots the distribution of a specified column. """ if column not in df.columns: print(f"Column '{column}' not found in DataFrame.") return plt.figure(figsize=(10, 6)) sns.histplot(df[column].dropna(), kde=True) plt.title(f'Distribution of {column}') plt.xlabel(column) plt.ylabel('Frequency') plt.show() def plot_correlation_matrix(df: pd.DataFrame): """ Plots the correlation matrix for numerical columns. """ numerical_df = df.select_dtypes(include=np.number) if numerical_df.empty: print("No numerical columns to plot correlation matrix.") return plt.figure(figsize=(12, 10)) sns.heatmap(numerical_df.corr(), annot=True, cmap='coolwarm', fmt=".2f") plt.title('Correlation Matrix') plt.show()

--- Authentication (for Colab/Jupyter) ---

def authenticate_google(): """ Authenticates the user for Google services (Colab/Jupyter). Returns the gspread client. """ from google.colab import auth import gspread from google.auth import default try: auth.authenticate_user() creds, _ = default() gc = gspread.authorize(creds) print("Google authentication successful.") return gc except Exception as e: print(f"Google authentication failed: {e}") return None

--- Main Execution Example ---

if name == 'main': # Example Usage: # 1. Authenticate gc_client = authenticate_google() if gc_client: # 2. Load data from a Google Sheet sheet_name = 'Your Google Sheet Name' # Replace with your sheet name df = load_spreadsheet(gc_client, sheet_name) if not df.empty: print("Original DataFrame head:") print(df.head()) print("\nDataFrame Info:") df.info() # 3. Clean data df_cleaned = clean_data(df) print("\nCleaned DataFrame head:") print(df_cleaned.head()) # 4. Feature Engineering (placeholder) df_engineered = feature_engineering(df_cleaned) # 5. Prepare data for modeling # Assuming 'target_column' is your target variable and other numerical columns are features target_column = 'Your Target Column Name' # Replace with your target column name if target_column in df_engineered.columns and df_engineered[target_column].dtype in [np.number, 'object']: # Convert target to numeric if it's not already, coercing errors df_engineered[target_column] = pd.to_numeric(df_engineered[target_column], errors='coerce') # Drop rows where the target is NaN after conversion df_engineered.dropna(subset=[target_column], inplace=True) if not df_engineered.empty: features = df_engineered.select_dtypes(include=np.number).drop(columns=[target_column], errors='ignore') target = df_engineered[target_column] if not features.empty: # Split data X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42) print(f"\nTraining data shape: {X_train.shape}") print(f"Testing data shape: {X_test.shape}") # 6. Train a model # Choose 'logistic_regression' or 'random_forest' model_type = 'random_forest' model = train_model(X_train, y_train, model_type=model_type) print(f"\n{model_type} model trained.") # 7. Evaluate the model accuracy = evaluate_model(model, X_test, y_test) print(f"\nModel accuracy on test set: {accuracy:.4f}") # 8. Optimize the model (Example for Random Forest) if model_type == 'random_forest': rf_param_space = { 'n_estimators': Integer(50, 200), 'max_depth': Integer(3, 10), 'min_samples_split': Integer(2, 10), 'min_samples_leaf': Integer(1, 5), 'criterion': Categorical(['gini', 'entropy']) } optimized_model, best_params = optimize_model(RandomForestClassifier(random_state=42), X_train, y_train, rf_param_space) if optimized_model: optimized_accuracy = evaluate_model(optimized_model, X_test, y_test) print(f"\nOptimized {model_type} model accuracy on test set: {optimized_accuracy:.4f}") # 9. Visualize data # Example: Plot distribution of a feature column (replace 'Your Feature Column Name' with an actual column) feature_to_plot = features.columns[0] if not features.empty else None if feature_to_plot: plot_distribution(df_engineered, feature_to_plot) # Plot correlation matrix plot_correlation_matrix(df_engineered) else: print("No numerical features found for modeling.") else: print(f"No data remaining after dropping rows with missing target values in '{target_column}'.") else: print(f"Target column '{target_column}' not found or is not suitable for classification/regression.") else: print("Failed to load spreadsheet data.") else: print("Google authentication failed. Cannot proceed with spreadsheet operations.") # Example Zero-Shot Classification text_to_classify = "This movie was fantastic and I loved the acting." possible_labels = ["positive", "negative", "neutral"] try: classification_results = zero_shot_classification(text_to_classify, possible_labels) print("\nZero-Shot Classification Results:") print(classification_results) except Exception as e: print(f"\nZero-Shot Classification failed: {e}") # Example Code Generation (Placeholder) generated_code = generate_code("create a data visualization", "python", "placeholder") print("\nGenerated Code Example:") print(generated_code) # Example Chain-of-Thought (Placeholder) chain_of_thought("Explain the concept of overfitting.", "Hint: Mention bias-variance trade-off.", "placeholder")

Popular repositories Loading

  1. waveterm waveterm Public

    Forked from wavetermdev/waveterm

    An open-source, cross-platform terminal for seamless workflows

    Go

  2. sturdy-octo-garbanzo sturdy-octo-garbanzo Public

  3. JARIS JARIS Public template

    1

  4. Java Java Public

    Oracle.py

  5. Flipping- Flipping- Public

    flipping language

    Python

  6. Cere Cere Public

    Python