Skip to content

coders33123/Flipping-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

import networkx as nx import matplotlib.pyplot as plt from typing import List, Dict

GraphManager Class for handling graph-based word relationships

class GraphManager: def init(self): """ Initializes a GraphManager instance. """ # Initialize the graph instance using NetworkX self.graph = nx.Graph()

def add_word(self, word: str, relationships: List[str] = [], encoded_vector: List[int] = []):
    """
    Adds a word to the graph with encoded vector and relationships.
    """
    self.graph.add_node(word, encoded=encoded_vector)
    for related_word in relationships:
        self.graph.add_edge(word, related_word)

def visualize(self):
    """
    Visualizes the graph using matplotlib to render nodes with labels.
    """
    # Generate the visualization of the graph
    plt.figure(figsize=(12, 12))
    pos = nx.spring_layout(self.graph)
    nx.draw(self.graph, pos, with_labels=True, node_color='skyblue', font_size=12, node_size=5000, font_weight='bold', edge_color='gray')
    plt.title('Word Relationship Graph')
    plt.show()

def get_neighbors(self, word: str) -> List[str]:
    """
    Returns a list of words directly connected to the specified word.
    
    Parameters:
    word (str): The word for which we want to find neighbors.
    
    Returns:
    list: List of neighboring words.
    """
    return list(self.graph.neighbors(word)) if word in self.graph else []

TransformationSystem Class to handle dynamic transformations and state management

class TransformationSystem: def init(self, context_influence: Dict[str, Dict[str, int]] = None): """ Initializes the TransformationSystem with optional context influence. Parameters: context_influence (dict, optional): A dictionary defining how context should influence the system. Defaults to None. """ self.context_influence = context_influence self.system_state = {} self.state_change = {}

def execute(self, action: str, vowel: str = None, parameters: Dict[str, int] = None):
    """
    Executes the action based on vowel-based flow control, context influence, and core logic.
    
    Parameters:
    action (str): The action to execute (e.g., "Start", "Branch", "Merge").
    vowel (str, optional): The vowel that influences the flow (e.g., 'a', 'e', etc.). Defaults to None.
    parameters (dict, optional): Additional parameters influencing the action. Defaults to None.
    
    Returns:
    tuple: Contains state_change, output_effect, and the updated system_state.
    """
    try:
        # Handle vowel-based flow control and action execution
        if vowel:
            self._apply_vowel_flow(vowel, parameters)
        
        # Apply contextual influence if defined
        if self.context_influence:
            self._apply_contextual_influence(action)
        
        # Perform the action
        output_effect = self._perform_action(action, parameters)
        self.state_change = self.system_state.copy()  # Capture state change
        return self.state_change, output_effect, self.system_state
    
    except KeyError as e:
        # Handle missing parameter or state key errors
        print(f"Error: Missing key {e}")
        return {}, "Error: Missing key", self.system_state
    
    except Exception as e:
        # Handle any other unexpected errors
        print(f"Unexpected error: {e}")
        return {}, "Unexpected error", self.system_state

def _apply_vowel_flow(self, vowel: str, parameters: Dict[str, int]):
    """
    Applies vowel-based flow control to modify the system’s state.
    
    Parameters:
    vowel (str): The vowel that influences the transformation.
    parameters (dict): Parameters that determine how the vowel flow is applied.
    """
    # Example: Influence system state based on the vowel
    flow_intensity = parameters.get('intensity', 1)
    self.system_state['vowel'] = vowel
    self.system_state['flow_intensity'] = flow_intensity
    # Add more flow logic depending on vowel (for example, 'a' could increase speed, 'e' could increase scope)

def _apply_contextual_influence(self, action: str):
    """
    Modifies the system state based on the defined context (e.g., Start, Branch, etc.).
    
    Parameters:
    action (str): The action being executed that could influence the context.
    """
    if action in self.context_influence:
        context_effect = self.context_influence[action]
        self.system_state.update(context_effect)

def _perform_action(self, action: str, parameters: Dict[str, int]):
    """
    Executes core actions like initiation, branching, merging, and filtering.
    
    Parameters:
    action (str): The action to perform.
    parameters (dict): Parameters that may influence the action.
    
    Returns:
    str: A message describing the outcome of the action.
    """
    if action == "Start":
        self.system_state['status'] = "Started"
        return "System Started"
    elif action == "Branch":
        self.system_state['status'] = "Branching"
        return "System Branching"
    elif action == "Merge":
        self.system_state['status'] = "Merging"
        return "System Merging"
    elif action == "Filter":
        self.system_state['status'] = "Filtering"
        return "System Filtering"
    else:
        self.system_state['status'] = "Unknown Action"
        return "Unknown Action"

Example Usage

GraphManager Example

graph_manager = GraphManager() graph_manager.add_word("apple", relationships=["banana"], encoded_vector=[1, 2, 3]) graph_manager.add_word("banana", relationships=["apple"], encoded_vector=[4, 5, 6]) graph_manager.visualize()

Setting up transformation system with contextual influence

context_influence = { "Start": {"threshold": 10}, "Branch": {"threshold": 20}, "Combine": {"threshold": 30} } transformation_system = TransformationSystem(context_influence) state_change, output_effect, system_state = transformation_system.execute("Start", vowel="a", parameters={'intensity': 5})

print(state_change, output_effect, system_state)

About

flipping language

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages