Skip to content

Fix and add tests for constant offset in objective function #76

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 29, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 13 additions & 7 deletions src/algorithms/Chalmet.jl
Original file line number Diff line number Diff line change
@@ -27,12 +27,10 @@ function _solve_constrained_model(
f = MOI.Utilities.scalarize(model.f)
g = sum(1.0 * fi for fi in f)
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(g)}(), g)
constraints = [
MOI.add_constraint(model.inner, f[1], MOI.LessThan(rhs[1] - 1))
MOI.add_constraint(model.inner, f[2], MOI.LessThan(rhs[2] - 1))
]
sets = MOI.LessThan.(rhs .- 1)
c = MOI.Utilities.normalize_and_add_constraint.(model.inner, f, sets)
MOI.optimize!(model.inner)
MOI.delete.(model, constraints)
MOI.delete.(model, c)
status = MOI.get(model.inner, MOI.TerminationStatus())
if !_is_scalar_status_optimal(status)
return status, nothing
@@ -74,7 +72,11 @@ function optimize_multiobjective!(algorithm::Chalmet, model::Optimizer)
end
_, y1[2] = _compute_point(model, variables, f2)
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(f1)}(), f1)
y1_constraint = MOI.add_constraint(model.inner, f2, MOI.LessThan(y1[2]))
y1_constraint = MOI.Utilities.normalize_and_add_constraint(
model.inner,
f2,
MOI.LessThan(y1[2]),
)
MOI.optimize!(model.inner)
x1, y1[1] = _compute_point(model, variables, f1)
MOI.delete(model.inner, y1_constraint)
@@ -90,7 +92,11 @@ function optimize_multiobjective!(algorithm::Chalmet, model::Optimizer)
return MOI.OPTIMAL, [solutions]
end
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(f2)}(), f2)
y2_constraint = MOI.add_constraint(model.inner, f1, MOI.LessThan(y2[1]))
y2_constraint = MOI.Utilities.normalize_and_add_constraint(
model.inner,
f1,
MOI.LessThan(y2[1]),
)
MOI.optimize!(model.inner)
x2, y2[2] = _compute_point(model, variables, f2)
MOI.delete(model.inner, y2_constraint)
13 changes: 10 additions & 3 deletions src/algorithms/EpsilonConstraint.jl
Original file line number Diff line number Diff line change
@@ -104,7 +104,14 @@ function optimize_multiobjective!(
else
MOI.GreaterThan{Float64}, left
end
ci = MOI.add_constraint(model, f1, SetType(bound))
constant = MOI.constant(f1, Float64)
ci = MOI.Utilities.normalize_and_add_constraint(
model,
f1,
SetType(bound);
allow_modify_function = true,
)
bound -= constant
status = MOI.OPTIMAL
for _ in 1:n_points
if _time_limit_exceeded(model, start_time)
@@ -121,9 +128,9 @@ function optimize_multiobjective!(
push!(solutions, SolutionPoint(X, Y))
end
if sense == MOI.MIN_SENSE
bound = min(Y[1] - ε, bound - ε)
bound = min(Y[1] - constant - ε, bound - ε)
else
bound = max(Y[1] + ε, bound + ε)
bound = max(Y[1] - constant + ε, bound + ε)
end
end
MOI.delete(model, ci)
3 changes: 2 additions & 1 deletion src/algorithms/Hierarchical.jl
Original file line number Diff line number Diff line change
@@ -117,7 +117,8 @@ function optimize_multiobjective!(algorithm::Hierarchical, model::Optimizer)
else
MOI.GreaterThan(Y[i] - rtol * abs(Y[i]))
end
push!(constraints, MOI.add_constraint(model, fi, set))
ci = MOI.Utilities.normalize_and_add_constraint(model, fi, set)
push!(constraints, ci)
end
end
X, Y = _compute_point(model, variables, model.f)
13 changes: 10 additions & 3 deletions src/algorithms/KirlikSayin.jl
Original file line number Diff line number Diff line change
@@ -152,7 +152,11 @@ function optimize_multiobjective!(algorithm::KirlikSayin, model::Optimizer)
)
for (i, f_i) in enumerate(scalars)
if i != k
ci = MOI.add_constraint(model.inner, f_i, SetType(ε[i] + δ))
ci = MOI.Utilities.normalize_and_add_constraint(
model.inner,
f_i,
SetType(ε[i] + δ),
)
push!(ε_constraints, ci)
end
end
@@ -168,8 +172,11 @@ function optimize_multiobjective!(algorithm::KirlikSayin, model::Optimizer)
sum_f = sum(1.0 * s for s in scalars)
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(sum_f)}(), sum_f)
# Constraint to eliminate weak dominance
zₖ_constraint =
MOI.add_constraint(model.inner, scalars[k], MOI.EqualTo(zₖ))
zₖ_constraint = MOI.Utilities.normalize_and_add_constraint(
model.inner,
scalars[k],
MOI.EqualTo(zₖ),
)
MOI.optimize!(model.inner)
MOI.delete.(model, ε_constraints)
MOI.delete(model, zₖ_constraint)
3 changes: 2 additions & 1 deletion src/algorithms/Lexicographic.jl
Original file line number Diff line number Diff line change
@@ -121,7 +121,8 @@ function _solve_in_sequence(
else
MOI.GreaterThan(Y - rtol * abs(Y))
end
push!(constraints, MOI.add_constraint(model, f, set))
ci = MOI.Utilities.normalize_and_add_constraint(model, f, set)
push!(constraints, ci)
end
for c in constraints
MOI.delete(model, c)
9 changes: 6 additions & 3 deletions src/algorithms/TambyVanderpooten.jl
Original file line number Diff line number Diff line change
@@ -143,7 +143,7 @@ function optimize_multiobjective!(
ε_constraints = Any[]
for (i, f_i) in enumerate(scalars)
if i != k
ci = MOI.add_constraint(
ci = MOI.Utilities.normalize_and_add_constraint(
model.inner,
f_i,
MOI.LessThan{Float64}(u[i] - 1),
@@ -171,8 +171,11 @@ function optimize_multiobjective!(
y_k = MOI.get(model.inner, MOI.ObjectiveValue())
sum_f = sum(1.0 * s for s in scalars)
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(sum_f)}(), sum_f)
y_k_constraint =
MOI.add_constraint(model.inner, scalars[k], MOI.EqualTo(y_k))
y_k_constraint = MOI.Utilities.normalize_and_add_constraint(
model.inner,
scalars[k],
MOI.EqualTo(y_k),
)
MOI.optimize!(model.inner)
if !_is_scalar_status_optimal(model)
return status, nothing
8 changes: 4 additions & 4 deletions test/algorithms/Chalmet.jl
Original file line number Diff line number Diff line change
@@ -98,7 +98,7 @@ function test_knapsack_max()
MOI.VectorAffineTerm(i, MOI.ScalarAffineTerm(C[i, j], x[j])) for
i in 1:2 for j in 1:n
],
[0.0, 0.0],
[1.0, 0.0],
)
MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
@@ -109,9 +109,9 @@ function test_knapsack_max()
0 1 1 1 1 0 1 0 1 1
]
Y_N = Float64[
2854 4636
3394 3817
3042 4627
2855 4636
3395 3817
3043 4627
]
N = MOI.get(model, MOI.ResultCount())
x_sol = hcat([MOI.get(model, MOI.VariablePrimal(i), x) for i in 1:N]...)
12 changes: 6 additions & 6 deletions test/algorithms/Dichotomy.jl
Original file line number Diff line number Diff line change
@@ -47,7 +47,7 @@ function test_moi_bolp_1()
model,
"""
variables: x, y
minobjective: [2 * x + y, x + 3 * y]
minobjective: [2 * x + y + 1, x + 3 * y]
c1: x + y >= 1.0
c2: 0.5 * x + y >= 0.75
c3: x >= 0.0
@@ -60,15 +60,15 @@ c4: y >= 0.25
@test MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(model, MOI.ResultCount()) == 3
X = [[0.0, 1.0], [0.5, 0.5], [1.0, 0.25]]
Y = [[1.0, 3.0], [1.5, 2.0], [2.25, 1.75]]
Y = [[2.0, 3.0], [2.5, 2.0], [3.25, 1.75]]
for i in 1:3
@test MOI.get(model, MOI.PrimalStatus(i)) == MOI.FEASIBLE_POINT
@test MOI.get(model, MOI.DualStatus(i)) == MOI.NO_SOLUTION
@test MOI.get(model, MOI.ObjectiveValue(i)) == Y[i]
@test MOI.get(model, MOI.VariablePrimal(i), x) == X[i][1]
@test MOI.get(model, MOI.VariablePrimal(i), y) == X[i][2]
end
@test MOI.get(model, MOI.ObjectiveBound()) == [1.0, 1.75]
@test MOI.get(model, MOI.ObjectiveBound()) == [2.0, 1.75]
return
end

@@ -83,7 +83,7 @@ function test_moi_bolp_1_maximize()
model,
"""
variables: x, y
maxobjective: [-2.0 * x + -1.0 * y, -1.0 * x + -3.0 * y]
maxobjective: [-2.0 * x + -1.0 * y, -1.0 * x + -3.0 * y + 0.5]
c1: x + y >= 1.0
c2: 0.5 * x + y >= 0.75
c3: x >= 0.0
@@ -96,15 +96,15 @@ c4: y >= 0.25
@test MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(model, MOI.ResultCount()) == 3
X = [[0.0, 1.0], [0.5, 0.5], [1.0, 0.25]]
Y = [-[1.0, 3.0], -[1.5, 2.0], -[2.25, 1.75]]
Y = [-[1.0, 2.5], -[1.5, 1.5], -[2.25, 1.25]]
for i in 1:3
@test MOI.get(model, MOI.PrimalStatus(i)) == MOI.FEASIBLE_POINT
@test MOI.get(model, MOI.DualStatus(i)) == MOI.NO_SOLUTION
@test MOI.get(model, MOI.ObjectiveValue(i)) == Y[i]
@test MOI.get(model, MOI.VariablePrimal(i), x) == X[i][1]
@test MOI.get(model, MOI.VariablePrimal(i), y) == X[i][2]
end
@test MOI.get(model, MOI.ObjectiveBound()) == -[1.0, 1.75]
@test MOI.get(model, MOI.ObjectiveBound()) == -[1.0, 1.25]
return
end

3 changes: 2 additions & 1 deletion test/algorithms/DominguezRios.jl
Original file line number Diff line number Diff line change
@@ -54,7 +54,7 @@ function test_knapsack_min_p3()
MOI.VectorAffineTerm(i, MOI.ScalarAffineTerm(-C[i, j], x[j]))
for i in 1:p for j in 1:n
],
fill(0.0, p),
ones(p),
)
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
@@ -77,6 +77,7 @@ function test_knapsack_min_p3()
-2997 -3539 -3509
-2518 -3866 -3191
]
Y_N .+= 1
N = MOI.get(model, MOI.ResultCount())
x_sol = hcat([MOI.get(model, MOI.VariablePrimal(i), x) for i in 1:N]...)
@test isapprox(sort(x_sol; dims = 1), sort(X_E'; dims = 1); atol = 1e-6)
19 changes: 10 additions & 9 deletions test/algorithms/EpsilonConstraint.jl
Original file line number Diff line number Diff line change
@@ -40,6 +40,7 @@ function test_biobjective_knapsack()
Float64,
[sum(1.0 * p[i] * x[i] for i in 1:length(w)) for p in [p1, p2]]...,
)
f.constants[1] = 1.0
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.add_constraint(
model,
@@ -48,15 +49,15 @@ function test_biobjective_knapsack()
)
MOI.optimize!(model)
results = Dict(
[955, 906] => [2, 3, 5, 6, 9, 10, 11, 14, 15, 16, 17],
[949, 915] => [1, 2, 5, 6, 8, 9, 10, 11, 15, 16, 17],
[948, 939] => [1, 2, 3, 5, 6, 8, 10, 11, 15, 16, 17],
[943, 940] => [2, 3, 5, 6, 8, 9, 10, 11, 15, 16, 17],
[936, 942] => [1, 2, 3, 5, 6, 10, 11, 12, 15, 16, 17],
[935, 947] => [2, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17],
[934, 971] => [2, 3, 5, 6, 8, 10, 11, 12, 15, 16, 17],
[927, 972] => [2, 3, 5, 6, 8, 9, 10, 11, 12, 16, 17],
[918, 983] => [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17],
[956, 906] => [2, 3, 5, 6, 9, 10, 11, 14, 15, 16, 17],
[950, 915] => [1, 2, 5, 6, 8, 9, 10, 11, 15, 16, 17],
[949, 939] => [1, 2, 3, 5, 6, 8, 10, 11, 15, 16, 17],
[944, 940] => [2, 3, 5, 6, 8, 9, 10, 11, 15, 16, 17],
[937, 942] => [1, 2, 3, 5, 6, 10, 11, 12, 15, 16, 17],
[936, 947] => [2, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17],
[935, 971] => [2, 3, 5, 6, 8, 10, 11, 12, 15, 16, 17],
[928, 972] => [2, 3, 5, 6, 8, 9, 10, 11, 12, 16, 17],
[919, 983] => [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17],
)
@test MOI.get(model, MOI.ResultCount()) == 9
for i in 1:MOI.get(model, MOI.ResultCount())
4 changes: 4 additions & 0 deletions test/algorithms/Hierarchical.jl
Original file line number Diff line number Diff line change
@@ -46,11 +46,15 @@ function test_knapsack()
MOI.add_constraint.(model, x, MOI.LessThan(1.0))
MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
f = MOI.Utilities.operate(vcat, Float64, P * x...)
f.constants[4] = 1_000.0
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.add_constraint(model, sum(1.0 * x[i] for i in 1:4), MOI.LessThan(2.0))
MOI.optimize!(model)
@test MOI.get(model, MOI.ResultCount()) == 1
x_sol = MOI.get(model, MOI.VariablePrimal(), x)
@test ≈(x_sol, [0.9, 0, 0.9, 0.2]; atol = 1e-3)
y_sol = MOI.get(model, MOI.ObjectiveValue())
@test ≈(y_sol, P * x_sol .+ [0.0, 0.0, 0.0, 1_000.0]; atol = 1e-4)
return
end

3 changes: 2 additions & 1 deletion test/algorithms/KirlikSayin.jl
Original file line number Diff line number Diff line change
@@ -51,7 +51,7 @@ function test_knapsack_min_p3()
MOI.VectorAffineTerm(i, MOI.ScalarAffineTerm(-C[i, j], x[j]))
for i in 1:p for j in 1:n
],
fill(0.0, p),
ones(p),
)
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
@@ -74,6 +74,7 @@ function test_knapsack_min_p3()
-2518 -3866 -3191
-2854 -4636 -3076
]
Y_N .+= 1
N = MOI.get(model, MOI.ResultCount())
x_sol = hcat([MOI.get(model, MOI.VariablePrimal(i), x) for i in 1:N]...)
@test isapprox(sort(x_sol; dims = 1), sort(X_E'; dims = 1); atol = 1e-6)
4 changes: 4 additions & 0 deletions test/algorithms/Lexicographic.jl
Original file line number Diff line number Diff line change
@@ -36,11 +36,15 @@ function test_knapsack()
MOI.add_constraint.(model, x, MOI.LessThan(1.0))
MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
f = MOI.Utilities.operate(vcat, Float64, P * x...)
f.constants[4] = 1_000.0
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.add_constraint(model, sum(1.0 * x[i] for i in 1:4), MOI.LessThan(2.0))
MOI.optimize!(model)
@test MOI.get(model, MOI.ResultCount()) == 1
x_sol = MOI.get(model, MOI.VariablePrimal(), x)
@test ≈(x_sol, [0.9, 1, 0, 0.1]; atol = 1e-3)
y_sol = MOI.get(model, MOI.ObjectiveValue())
@test ≈(y_sol, P * x_sol .+ [0.0, 0.0, 0.0, 1_000.0]; atol = 1e-4)
return
end

3 changes: 2 additions & 1 deletion test/algorithms/TambyVanderpooten.jl
Original file line number Diff line number Diff line change
@@ -51,7 +51,7 @@ function test_knapsack_min_p3()
MOI.VectorAffineTerm(i, MOI.ScalarAffineTerm(-C[i, j], x[j]))
for i in 1:p for j in 1:n
],
fill(0.0, p),
ones(p),
)
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
@@ -74,6 +74,7 @@ function test_knapsack_min_p3()
-2518 -3866 -3191
-2854 -4636 -3076
]
Y_N .+= 1
N = MOI.get(model, MOI.ResultCount())
x_sol = hcat([MOI.get(model, MOI.VariablePrimal(i), x) for i in 1:N]...)'
y_sol = hcat([MOI.get(model, MOI.ObjectiveValue(i)) for i in 1:N]...)'