Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add stats/incr/nanmvariance #6140

Open
wants to merge 10 commits into
base: develop
Choose a base branch
from
190 changes: 190 additions & 0 deletions lib/node_modules/@stdlib/stats/incr/nanmvariance/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# nanmvariance

> Compute a moving [unbiased sample variance][sample-variance] incrementally, ignoring `NaN` values.

<section class="intro">

For a window of size `W`, the [unbiased sample variance][sample-variance] is defined as

<!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2" alt="Equation for the unbiased sample variance."> -->

```math
s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2
```

<!-- <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2" data-equation="eq:unbiased_sample_variance">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/mvariance/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for the unbiased sample variance.">
<br>
</div> -->

<!-- </equation> -->

where `n` is the number of non-`NaN` values in the window, and `\bar{x}` is the arithmetic mean of the non-`NaN` values.

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var incrnanmvariance = require( '@stdlib/stats/incr/nanmvariance' );
```

#### incrnanmvariance( window\[, mean] )

Returns an accumulator `function` which incrementally computes a moving [unbiased sample variance][sample-variance], ignoring `NaN` values. The `window` parameter defines the number of values over which to compute the moving [unbiased sample variance][sample-variance].

```javascript
var accumulator = incrnanmvariance( 3 );
```

If the mean is already known, provide a `mean` argument.

```javascript
var accumulator = incrnanmvariance( 3, 5.0 );
```

#### accumulator( \[x] )

If provided an input value `x`, the accumulator function returns an updated [unbiased sample variance][sample-variance]. If not provided an input value `x`, the accumulator function returns the current [unbiased sample variance][sample-variance].

```javascript
var accumulator = incrnanmvariance( 3 );

var s2 = accumulator();
// returns null

// Fill the window...
s2 = accumulator( 2.0 ); // [2.0]
// returns 0.0

s2 = accumulator( NaN ); // [2.0, NaN]
// returns 0.0

s2 = accumulator( -5.0 ); // [2.0, NaN, -5.0]
// returns 24.5

// Window begins sliding...
s2 = accumulator( 3.0 ); // [NaN, -5.0, 3.0]
// returns 19.0

s2 = accumulator( NaN ); // [-5.0, 3.0, NaN]
// returns 19.0

s2 = accumulator();
// returns 19.0
```

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- Input values are **not** type checked. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
- NaN input values are ignored. If the window contains only NaN values, the variance is calculated as if the window were empty.
- As `W` values are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided non-NaN values.
- The implementation uses [Welford's algorithm][welford-algorithm].

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var incrnanmvariance = require( '@stdlib/stats/incr/nanmvariance' );

var accumulator;
var v;
var i;

// Initialize an accumulator:
accumulator = incrnanmvariance( 5 );

// For each simulated datum, update the moving unbiased sample variance...
console.log( '\nValue\tSample Variance\n' );
for ( i = 0; i < 100; i++ ) {
if ( randu() < 0.2 ) {
v = NaN;
} else {
v = randu() * 100.0;
}
console.log( '%d\t%d', v.toFixed( 4 ), accumulator( v ).toFixed( 4 ) );
}
console.log( '\nFinal variance: %d\n', accumulator() );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

* * *

## See Also

- <span class="package-name">[`@stdlib/stats/incr/mvariance`][@stdlib/stats/incr/mvariance]</span><span class="delimiter">: </span><span class="description">compute a moving unbiased sample variance incrementally.</span>
- <span class="package-name">[`@stdlib/stats/incr/nanmmean`][@stdlib/stats/incr/nanmmean]</span><span class="delimiter">: </span><span class="description">compute a moving arithmetic mean incrementally, ignoring NaN values.</span>
- <span class="package-name">[`@stdlib/stats/incr/nanmstdev`][@stdlib/stats/incr/nanmstdev]</span><span class="delimiter">: </span><span class="description">compute a moving corrected sample standard deviation incrementally, ignoring NaN values.</span>
- <span class="package-name">[`@stdlib/stats/incr/nanvariance`][@stdlib/stats/incr/nanvariance]</span><span class="delimiter">: </span><span class="description">compute an unbiased sample variance incrementally, ignoring NaN values.</span>

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[sample-variance]: https://en.wikipedia.org/wiki/Variance
[welford-algorithm]: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm

<!-- <related-links> -->

[@stdlib/stats/incr/mvariance]: https://github.com/stdlib-js/stats-incr-mvariance

[@stdlib/stats/incr/nanmmean]: https://github.com/stdlib-js/stats-incr-nanmmean

[@stdlib/stats/incr/nanmstdev]: https://github.com/stdlib-js/stats-incr-nanmstdev

[@stdlib/stats/incr/nanvariance]: https://github.com/stdlib-js/stats-incr-nanvariance

<!-- </related-links> -->

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var pkg = require( './../package.json' ).name;
var incrnanmvariance = require( './../lib' );


// MAIN //

bench( pkg, function benchmark( b ) {
var f;
var i;
b.tic();
for ( i = 0; i < b.iterations; i++ ) {
f = incrnanmvariance( (i%5)+1 );
if ( typeof f !== 'function' ) {
b.fail( 'should return a function' );
}
}
b.toc();
if ( typeof f !== 'function' ) {
b.fail( 'should return a function' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::accumulator', function benchmark( b ) {
var acc;
var v;
var i;

acc = incrnanmvariance( 5 );

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = acc( randu() );
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::accumulator,NaN', function benchmark( b ) {
var acc;
var v;
var i;

acc = incrnanmvariance( 5 );

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = acc( NaN );
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::accumulator,known_mean', function benchmark( b ) {
var acc;
var v;
var i;

acc = incrnanmvariance( 5, 0.5 );

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = acc( randu() );
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading