Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Safe Interval Path Planner #1184

Open
wants to merge 24 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 58 additions & 1 deletion PathPlanning/TimeBasedPathPlanning/GridWithDynamicObstacles.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,13 +30,27 @@ def __sub__(self, other):
f"Subtraction not supported for Position and {type(other)}"
)

def __hash__(self):
return hash((self.x, self.y))

@dataclass
class Interval:
start_time: int
end_time: int

class ObstacleArrangement(Enum):
# Random obstacle positions and movements
RANDOM = 0
# Obstacles start in a line in y at center of grid and move side-to-side in x
ARRANGEMENT1 = 1

"""
Generates a 2d numpy array with lists for elements.
"""
def empty_2d_array_of_lists(x: int, y: int) -> np.ndarray:
arr = np.empty((x, y), dtype=object)
arr[:] = [[[] for _ in range(y)] for _ in range(x)]
return arr

class Grid:
# Set in constructor
Expand Down Expand Up @@ -86,7 +100,7 @@ def __init__(
"""
def generate_dynamic_obstacles(self, obs_count: int) -> list[list[Position]]:
obstacle_paths = []
for _ in (0, obs_count):
for _ in range(0, obs_count):
# Sample until a free starting space is found
initial_position = self.sample_random_position()
while not self.valid_obstacle_position(initial_position, 0):
Expand Down Expand Up @@ -231,6 +245,49 @@ def get_obstacle_positions_at_time(self, t: int) -> tuple[list[int], list[int]]:
y_positions.append(obs_path[t].y)
return (x_positions, y_positions)

"""
Returns safe intervals for each cell.
"""
def get_safe_intervals(self) -> np.ndarray:
intervals = empty_2d_array_of_lists(self.grid_size[0], self.grid_size[1])
for x in range(intervals.shape[0]):
for y in range(intervals.shape[1]):
intervals[x, y] = self.get_safe_intervals_at_cell(Position(x, y))

return intervals

"""
Generate the safe intervals for a given cell. The intervals will be in order of start time.
ex: Interval (2, 3) will be before Interval (4, 5)
"""
def get_safe_intervals_at_cell(self, cell: Position) -> list[Interval]:
vals = self.reservation_matrix[cell.x, cell.y, :]
# Find where the array is zero
zero_mask = (vals == 0)

# Identify transitions between zero and nonzero elements
diff = np.diff(zero_mask.astype(int))

# Start indices: where zeros begin (1 after a nonzero)
start_indices = np.where(diff == 1)[0] + 1

# End indices: where zeros stop (just before a nonzero)
end_indices = np.where(diff == -1)[0]

# Handle edge cases if the array starts or ends with zeros
if zero_mask[0]: # If the first element is zero, add index 0 to start_indices
start_indices = np.insert(start_indices, 0, 0)
if zero_mask[-1]: # If the last element is zero, add the last index to end_indices
end_indices = np.append(end_indices, len(vals) - 1)

# Create pairs of (first zero, last zero)
intervals = [Interval(int(start), int(end)) for start, end in zip(start_indices, end_indices)]

# Remove intervals where a cell is only free for one time step. Those intervals not provide enough time to
# move into and out of the cell each take 1 time step, and the cell is considered occupied during
# both the time step when it is entering the cell, and the time step when it is leaving the cell.
intervals = [interval for interval in intervals if interval.start_time != interval.end_time]
return intervals

show_animation = True

Expand Down
303 changes: 303 additions & 0 deletions PathPlanning/TimeBasedPathPlanning/SafeInterval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,303 @@
"""
Safe interval path planner
This script implements a safe-interval path planner for a 2d grid with dynamic obstacles. It is faster than
SpaceTime A* because it reduces the number of redundant node expansions by pre-computing regions of adjacent
time steps that are safe ("safe intervals") at each position. This allows the algorithm to skip expanding nodes
that are in intervals that have already been visited earlier.

Reference: https://www.cs.cmu.edu/~maxim/files/sipp_icra11.pdf
"""

import numpy as np
import matplotlib.pyplot as plt
from PathPlanning.TimeBasedPathPlanning.GridWithDynamicObstacles import (
Grid,
Interval,
ObstacleArrangement,
Position,
empty_2d_array_of_lists,
)
import heapq
import random
from dataclasses import dataclass
from functools import total_ordering
import time

# Seed randomness for reproducibility
RANDOM_SEED = 50
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)

@dataclass()
# Note: Total_ordering is used instead of adding `order=True` to the @dataclass decorator because
# this class needs to override the __lt__ and __eq__ methods to ignore parent_index. The Parent
# index and interval member variables are just used to track the path found by the algorithm,
# and has no effect on the quality of a node.
@total_ordering
class Node:
position: Position
time: int
heuristic: int
parent_index: int
interval: Interval

"""
This is what is used to drive node expansion. The node with the lowest value is expanded next.
This comparison prioritizes the node with the lowest cost-to-come (self.time) + cost-to-go (self.heuristic)
"""
def __lt__(self, other: object):
if not isinstance(other, Node):
return NotImplementedError(f"Cannot compare Node with object of type: {type(other)}")
return (self.time + self.heuristic) < (other.time + other.heuristic)

"""
Equality only cares about position and time. Heuristic and interval will always be the same for a given
(position, time) pairing, so they are not considered in equality.
"""
def __eq__(self, other: object):
if not isinstance(other, Node):
return NotImplementedError(f"Cannot compare Node with object of type: {type(other)}")
return self.position == other.position and self.time == other.time

@dataclass
class EntryTimeAndInterval:
entry_time: int
interval: Interval

class NodePath:
path: list[Node]
positions_at_time: dict[int, Position] = {}

def __init__(self, path: list[Node]):
self.path = path
for (i, node) in enumerate(path):
if i > 0:
# account for waiting in interval at previous node
prev_node = path[i-1]
for t in range(prev_node.time, node.time):
self.positions_at_time[t] = prev_node.position

self.positions_at_time[node.time] = node.position

"""
Get the position of the path at a given time
"""
def get_position(self, time: int) -> Position | None:
return self.positions_at_time.get(time)

"""
Time stamp of the last node in the path
"""
def goal_reached_time(self) -> int:
return self.path[-1].time

def __repr__(self):
repr_string = ""
for i, node in enumerate(self.path):
repr_string += f"{i}: {node}\n"
return repr_string


class SafeIntervalPathPlanner:
grid: Grid
start: Position
goal: Position

def __init__(self, grid: Grid, start: Position, goal: Position):
self.grid = grid
self.start = start
self.goal = goal

"""
Generate a plan given the loaded problem statement. Raises an exception if it fails to find a path.
Arguments:
verbose (bool): set to True to print debug information
"""
def plan(self, verbose: bool = False) -> NodePath:

safe_intervals = self.grid.get_safe_intervals()

open_set: list[Node] = []
first_node_interval = safe_intervals[self.start.x, self.start.y][0]
heapq.heappush(
open_set, Node(self.start, 0, self.calculate_heuristic(self.start), -1, first_node_interval)
)

expanded_list: list[Node] = []
visited_intervals = empty_2d_array_of_lists(self.grid.grid_size[0], self.grid.grid_size[1])
while open_set:
expanded_node: Node = heapq.heappop(open_set)
if verbose:
print("Expanded node:", expanded_node)

if expanded_node.time + 1 >= self.grid.time_limit:
if verbose:
print(f"\tSkipping node that is past time limit: {expanded_node}")
continue

if expanded_node.position == self.goal:
print(f"Found path to goal after {len(expanded_list)} expansions")
path = []
path_walker: Node = expanded_node
while True:
path.append(path_walker)
if path_walker.parent_index == -1:
break
path_walker = expanded_list[path_walker.parent_index]

# reverse path so it goes start -> goal
path.reverse()
return NodePath(path)

expanded_idx = len(expanded_list)
expanded_list.append(expanded_node)
entry_time_and_node = EntryTimeAndInterval(expanded_node.time, expanded_node.interval)
add_entry_to_visited_intervals_array(entry_time_and_node, visited_intervals, expanded_node)

for child in self.generate_successors(expanded_node, expanded_idx, safe_intervals, visited_intervals):
heapq.heappush(open_set, child)

raise Exception("No path found")

"""
Generate list of possible successors of the provided `parent_node` that are worth expanding
"""
def generate_successors(
self, parent_node: Node, parent_node_idx: int, intervals: np.ndarray, visited_intervals: np.ndarray
) -> list[Node]:
new_nodes = []
diffs = [
Position(0, 0),
Position(1, 0),
Position(-1, 0),
Position(0, 1),
Position(0, -1),
]
for diff in diffs:
new_pos = parent_node.position + diff
if not self.grid.inside_grid_bounds(new_pos):
continue

current_interval = parent_node.interval

new_cell_intervals: list[Interval] = intervals[new_pos.x, new_pos.y]
for interval in new_cell_intervals:
# if interval starts after current ends, break
# assumption: intervals are sorted by start time, so all future intervals will hit this condition as well
if interval.start_time > current_interval.end_time:
break

# if interval ends before current starts, skip
if interval.end_time < current_interval.start_time:
continue

# if we have already expanded a node in this interval with a <= starting time, skip
better_node_expanded = False
for visited in visited_intervals[new_pos.x, new_pos.y]:
if interval == visited.interval and visited.entry_time <= parent_node.time + 1:
better_node_expanded = True
break
if better_node_expanded:
continue

# We know there is a node worth expanding. Generate successor at the earliest possible time the
# new interval can be entered
for possible_t in range(max(parent_node.time + 1, interval.start_time), min(current_interval.end_time, interval.end_time)):
if self.grid.valid_position(new_pos, possible_t):
new_nodes.append(Node(
new_pos,
# entry is max of interval start and parent node time + 1 (get there as soon as possible)
max(interval.start_time, parent_node.time + 1),
self.calculate_heuristic(new_pos),
parent_node_idx,
interval,
))
# break because all t's after this will make nodes with a higher cost, the same heuristic, and are in the same interval
break

return new_nodes

"""
Calculate the heuristic for a given position - Manhattan distance to the goal
"""
def calculate_heuristic(self, position) -> int:
diff = self.goal - position
return abs(diff.x) + abs(diff.y)


"""
Adds a new entry to the visited intervals array. If the entry is already present, the entry time is updated if the new
entry time is better. Otherwise, the entry is added to `visited_intervals` at the position of `expanded_node`.
"""
def add_entry_to_visited_intervals_array(entry_time_and_interval: EntryTimeAndInterval, visited_intervals: np.ndarray, expanded_node: Node):
# if entry is present, update entry time if better
for existing_entry_and_interval in visited_intervals[expanded_node.position.x, expanded_node.position.y]:
if existing_entry_and_interval.interval == entry_time_and_interval.interval:
existing_entry_and_interval.entry_time = min(existing_entry_and_interval.entry_time, entry_time_and_interval.entry_time)

# Otherwise, append
visited_intervals[expanded_node.position.x, expanded_node.position.y].append(entry_time_and_interval)


show_animation = True
verbose = False

def main():
start = Position(1, 18)
goal = Position(19, 19)
grid_side_length = 21

start_time = time.time()

grid = Grid(
np.array([grid_side_length, grid_side_length]),
num_obstacles=250,
obstacle_avoid_points=[start, goal],
obstacle_arrangement=ObstacleArrangement.ARRANGEMENT1,
# obstacle_arrangement=ObstacleArrangement.RANDOM,
)

planner = SafeIntervalPathPlanner(grid, start, goal)
path = planner.plan(verbose)
runtime = time.time() - start_time
print(f"Planning took: {runtime:.5f} seconds")

if verbose:
print(f"Path: {path}")

if not show_animation:
return

fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(
autoscale_on=False,
xlim=(0, grid.grid_size[0] - 1),
ylim=(0, grid.grid_size[1] - 1),
)
ax.set_aspect("equal")
ax.grid()
ax.set_xticks(np.arange(0, grid_side_length, 1))
ax.set_yticks(np.arange(0, grid_side_length, 1))

(start_and_goal,) = ax.plot([], [], "mD", ms=15, label="Start and Goal")
start_and_goal.set_data([start.x, goal.x], [start.y, goal.y])
(obs_points,) = ax.plot([], [], "ro", ms=15, label="Obstacles")
(path_points,) = ax.plot([], [], "bo", ms=10, label="Path Found")
ax.legend(bbox_to_anchor=(1.05, 1))

# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
"key_release_event", lambda event: [exit(0) if event.key == "escape" else None]
)

for i in range(0, path.goal_reached_time() + 1):
obs_positions = grid.get_obstacle_positions_at_time(i)
obs_points.set_data(obs_positions[0], obs_positions[1])
path_position = path.get_position(i)
path_points.set_data([path_position.x], [path_position.y])
plt.pause(0.2)
plt.show()


if __name__ == "__main__":
main()
Loading